630 research outputs found

    The order-disorder transition of the (3x3)Sn/Ge(111) phase

    Full text link
    Growing attention has been drawn in the past years to the \alpha-phase (1/3 monolayer) of Sn on Ge(111), which undergoes a transition from the low temperature (3x3) phase to the room temperature (\sqrt3 x \sqrt3)R30 one. On the basis of scanning tunnelling microscopy experiments, this transition was claimed to be the manifestation of a surface charge density wave (SCDW), i.e. a periodic redistribution of charge, possibly accompanied by a periodic lattice distortion, which determines a change of the surface symmetry. As further experiments with different techniques were being performed, increasing doubts were cast about the SCDW model. We have measured by He scattering the long range order of the 1/3 monolayer phase of Sn on the Ge(111) surface throughout the phase transition. The transition has been found of the order-disorder type with a critical temperature Tc=220 K. The expected 3-State Potts critical exponents are shown to be consistent with the observed power law dependence of the (3x3) order parameter and its correlation length close to Tc, thus excluding a charge density wave driven phase transition.Comment: 6 pages with 4 figures; updated reference

    Selection methods regulate evolution of cooperation in digital evolution.

    Get PDF
    A key, yet often neglected, component of digital evolution and evolutionary models is the 'selection method' which assigns fitness (number of offspring) to individuals based on their performance scores (efficiency in performing tasks). Here, we study with formal analysis and numerical experiments the evolution of cooperation under the five most common selection methods (proportionate, rank, truncation-proportionate, truncation-uniform and tournament). We consider related individuals engaging in a Prisoner's Dilemma game where individuals can either cooperate or defect. A cooperator pays a cost, whereas its partner receives a benefit, which affect their performance scores. These performance scores are translated into fitness by one of the five selection methods. We show that cooperation is positively associated with the relatedness between individuals under all selection methods. By contrast, the change in the performance benefit of cooperation affects the populations' average level of cooperation only under the proportionate methods. We also demonstrate that the truncation and tournament methods may introduce negative frequency-dependence and lead to the evolution of polymorphic populations. Using the example of the evolution of cooperation, we show that the choice of selection method, though it is often marginalized, can considerably affect the evolutionary dynamics

    Historical contingency affects signaling strategies and competitive abilities in evolving populations of simulated robots.

    Get PDF
    One of the key innovations during the evolution of life on earth has been the emergence of efficient communication systems, yet little is known about the causes and consequences of the great diversity within and between species. By conducting experimental evolution in 20 independently evolving populations of cooperatively foraging simulated robots, we found that historical contingency in the occurrence order of novel phenotypic traits resulted in the emergence of two distinct communication strategies. The more complex foraging strategy was less efficient than the simpler strategy. However, when the 20 populations were placed in competition with each other, the populations with the more complex strategy outperformed the populations with the less complex strategy. These results demonstrate a tradeoff between communication efficiency and robustness and suggest that stochastic events have important effects on signal evolution and the outcome of competition between distinct populations

    The evolution of information suppression in communicating robots with conflicting interests.

    Get PDF
    Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species

    An Internal Teacher for Neural Computation

    Get PDF
    Contextual signals might supervise discovery of coherently varying information between cortical modules computing different functions of their receptive field input. This hypothesis is explored in two sets of computational experiments, one studying the effects on learning of long-range unidirectional contextual signals mediated by intervening processors, and the other showing contextually supervised discovery of a high-order variable in a multi-layer network

    Study of the isotropic contribution to the analysis of photoelectron diffraction experiments at the ALOISA beamline

    Full text link
    The angular distribution of the intensity in photoemission experiments is affected by electron diffraction patterns and by a smoothly varying ISO contribution originated by both intrumental details and physical properties of the samples. The origin of the various contributions to the ISO component has been identified since many years. Nonetheless in this work we present original developement of the ED analysis, which arises from the evolution of instrumental performance, in terms of analyzers positioning and angular resolution, as well as collimation and size of X-ray beams in third generation synchrotron sources. The analytical treatement of the instrumental factors is presented in detail for the end station of the ALOISA beamline (Trieste Synchrotron), where a wide variety of scattering geometries is available for ED experiments. We present here the basic formulae and their application to experimental data taken on the Fe/Cu3Au(001) system in order to highlight the role of the various parameters included in the distribution function. A specific model for the surface illumination has been developed as well as the overlayer thickness and surface roughness have been considered.Comment: RevTex, nine pages with five eps figures; to be published in J. Electron Spectrosc. Relat. Pheno

    Evolutionary Re-Adaptation of Neurocontrollers in Changing Environments

    Get PDF
    Evolutionary robotics is an interesting novel approach to shape the control system of autonomous robots. This explores issues related to re-adaptation in changed environments of a population of evolved individuals. Experimental studies are reported for genetic evolution of neurocontrollers that have developed the ability to perform homing navigation for battery recharge of miniature mobile robot. It is shown that re-adaptation to important changes in the environment is very rapid and does not disrupt previously acquired knowledge. The results are discussed in relation to the internal representation of the neurocontroller and to the variability within the population

    Evolutionary Mobile Robotics

    Get PDF
    corecore